What is JVM

What is JVM



  1. A specification where the working of Java Virtual Machine is specified. But the implementation provider is independent to choose the algorithm. Its implementation has been provided by Sun and other companies.
  2. An implementation Its implementation is known as JRE (Java Runtime Environment).
  3. Runtime Instance Whenever you write java command on the command prompt to run the java class, an instance of JVM is created.

Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as programs written in other languages and compiled to Java bytecode. The JVM is detailed by a specification that formally describes what is required of a JVM implementation. Having a specification ensures interoperability of Java programs across different implementations so that program authors using the Java Development Kit (JDK) need not worry about idiosyncrasies of the underlying hardware platform.

JVM (Java Virtual Machine

JVM (Java Virtual Machine) is an abstract machine. It is a specification that provides a runtime environment in which Java bytecode can be executed.
JVMs are available for many hardware and software platforms (i.e. JVM is platform dependent).

What it does

The JVM performs the following operation:
  • Loads code
  • Verifies code
  • Executes code
  • Provides runtime environment
JVM provides definitions for the:
  • Memory area
  • Class file format
  • Register set
  • Garbage-collected heap
  • Fatal error reporting etc.

Internal Architecture of JVM

Let's understand the internal architecture of JVM. It contains classloader, memory area, execution engine etc.
Internal Architecture of JVM












1) Classloader

Classloader is a subsystem of JVM that is used to load class files.

2) Class(Method) Area

Class(Method) Area stores per-class structures such as the runtime constant pool, field and method data, the code for methods.

3) Heap

It is the runtime data area in which objects are allocated.

4) Stack

Java Stack stores frames. It holds local variables and partial results, and plays a part in method invocation and return.
Each thread has a private JVM stack, created at the same time as a thread.
A new frame is created each time a method is invoked. A frame is destroyed when its method invocation completes.

5) Program Counter Register

PC (program counter) register contains the address of the Java virtual machine instruction currently being executed.

6) Native Method Stack

It contains all the native methods used in the application.

7) Execution Engine

It contains:
1) A virtual processor
2) Interpreter: Read bytecode stream then execute the instructions.
3) Just-In-Time(JIT) compiler: It is used to improve the performance. JIT compiles parts of the bytecode that have similar functionality at the same time, and hence reduces the amount of time needed for compilation. Here, the term "compiler" refers to a translator from the instruction set of a Java virtual machine (JVM) to the instruction set of a specific CPU.
The JVM operates on primitive values (integers and floating-point numbers) and references. The JVM is fundamentally a 32-bit machine. long and double types, which are 64-bits, are supported natively, but consume two units of storage in a frame's local variables or operand stack, since each unit is 32 bits. booleanbyteshort, and char types are all sign-extended (except char which is zero-extended) and operated on as 32-bit integers, the same as int types. The smaller types only have a few type-specific instructions for loading, storing, and type conversion. boolean is not known at all to the JVM before the second editions where booleans were operated on as 8-bit byte values






Comments